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In nature, the ability of sighted animals to selectively respond to approaching objects is
crucial for survival. The capacity to discriminate approaching (looming) movements from
other motion patterns, termed loom-selectivity, is fundamental to collision perception.
Driven by biological research, the single neuron computation of lobula giant movement
detectors (LGMD) in locust's visual systems has ramiûed, inspiring numerous artiûcial
vision systems. However, a notable gap remains: existing computational models, typically
based on single-neuron implementations, exhibit limited or task-speciûc looming
selectivity compared to biological organisms. To bridge this gap, we proposed a novel
computational framework combining LGMD1 and LGMD2 neuronal models. This composite
model eûectively processes diverse visual movements and demonstrates enhanced
selectivity for looming stimuli, robustly distinguishing them from translating and receding
motion. The proposed framework was simpliûed and embedded into a micro-robotic vision
system, guiding collision-free navigation within visually dynamic environments. In this
paper, we further investigated the internal structure of the neuronal assembly network to
clarify the mechanisms underlying this improved selectivity. Through ablation studies on
the previously developed LGMD2-LGMD1 composite model and comparative experiments
with state-of-the-art methods, we identiûed that elevating the time derivative in the
second-stage neuronal processing module is central to enhanced looming selectivity,
rendering subsequent neural computations redundant. Accordingly, we developed a more
economical neuronal model emphasizing time derivative computation within visual
streams. This optimized model maintains performance comparable to the LGMD2-LGMD1
composite model and consistently outperforms existing bio-inspired methods. Real-world
testing through online implementation on micro-mobile robots further conûrmed that
increasing the sensitivity to temporal changes substantially enhances looming selectivity,
reinforcing the value of this approach for practical collision avoidance tasks.
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ABSTRACT9

In nature, the ability of sighted animals to selectively respond to approaching objects is crucial for survival.

The capacity to discriminate approaching (looming) movements from other motion patterns, termed

loom-selectivity, is fundamental to collision perception. Driven by biological research, the single neuron

computation of lobula giant movement detectors (LGMD) in locust’s visual systems has ramified, inspiring

numerous artificial vision systems. However, a notable gap remains: existing computational models,

typically based on single-neuron implementations, exhibit limited or task-specific looming selectivity

compared to biological organisms. To bridge this gap, we proposed a novel computational framework

combining LGMD1 and LGMD2 neuronal models. This composite model effectively processes diverse

visual movements and demonstrates enhanced selectivity for looming stimuli, robustly distinguishing

them from translating and receding motion. The proposed framework was simplified and embedded into

a micro-robotic vision system, guiding collision-free navigation within visually dynamic environments. In

this paper, we further investigated the internal structure of the neuronal assembly network to clarify the

mechanisms underlying this improved selectivity. Through ablation studies on the previously developed

LGMD2-LGMD1 composite model and comparative experiments with state-of-the-art methods, we

identified that elevating the time derivative in the second-stage neuronal processing module is central to

enhanced looming selectivity, rendering subsequent neural computations redundant. Accordingly, we

developed a more economical neuronal model emphasizing time derivative computation within visual

streams. This optimized model maintains performance comparable to the LGMD2-LGMD1 composite

model and consistently outperforms existing bio-inspired methods. Real-world testing through online

implementation on micro-mobile robots further confirmed that increasing the sensitivity to temporal

changes substantially enhances looming selectivity, reinforcing the value of this approach for practical

collision avoidance tasks.
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1 INTRODUCTION32

Collision detection and avoidance are critical capabilities for all living creatures. Through millions of33

years of evolution, animals have developed sophisticated abilities to perceive collisions within complex34

and dynamic environments. Specifically, they excel at distinguishing objects that move directly toward35

them—potential collision threats known as looming stimuli—from other types of motion, such as trans-36

lation, recession, or rotation caused either by their ego-movements or by nearby moving objects. A37

fundamental question in neuroscience concerns how animals with normal vision, including mammals and38

insects, achieve this exceptional sensitivity to looming stimuli—a phenomenon termed “loom-selectivity”.39

Gaining insights into the neural mechanisms underlying this ability can guide the development of ad-40

vanced dynamic vision systems, enabling us to replicate natural visual capabilities and address real-world41

collision detection challenges more effectively.42

Within recent decades, computational models inspired by biological insights—particularly detailed43

investigations into the neural circuits of insects—have developed rapidly and significantly advanced our44

understanding of visual processing mechanisms and strategies, as reviewed in (Fu et al., 2019; Fu, 2023).45

Among these biological models, flies and locusts are particularly noteworthy examples of animals studied46

extensively for their robust looming perception capabilities (Muijres et al., 2014; Bertrand et al., 2015;47
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Figure 1. Schematic illustration of presynaptic neuropils of LGMD in either compound eye of locust:

each LGMD visual pathway adopts a four-layer structure: retina, lamina, medulla and lobula.

Klapoetke et al., 2017a; Rind and Simmons, 1998; Rind et al., 2016). Their visual system mechanisms48

have inspired and been successfully integrated into artificial vision systems, including robotic platforms49

for ground and aerial navigation (Franceschini, 2014; Serres and Ruffier, 2017; Fu et al., 2018a).50

Motivated by the visual systems of flies, numerous optical flow (OF)-based perception methods have51

emerged, particularly drawing on insights from lobula plate tangential cells (LPTCs) (Serres and Ruffier,52

2017). These OF-strategies rely on local pixel-wise motion cues to guide diverse navigational behaviors53

in flies, including tunnel crossing (Wang et al., 2021), terrain following (Wang et al., 2019), collision54

avoidance (Bertrand et al., 2015), etc., and offer significant advantages in computational simplicity.55

Consequently, they have been widely adopted in robotic applications, especially in aerial platforms such56

as micro aerial vehicles (Green et al., 2004; Green and Oh, 2008; Milde et al., 2015). In recent years,57

research has expanded beyond LPTCs to investigate and model deeper visual projection neurons located58

in the insect brain, specifically lobula plate/lobula column type-2 (LPLC2) neurons (Klapoetke et al.,59

2017b; Zhou et al., 2022; Zhao et al., 2023). These neurons exhibit exceptional selectivity, responding60

preferentially to looming objects approaching from the visual center (Hua et al., 2022). Additionally,61

models incorporating LPLC2 neurons have been further enhanced by integrating attention mechanisms,62

enabling effective detection and localization of multiple looming targets in complex, natural environments63

(Liu and Fu, 2025).64

Another type of looming perception models draws on the physiological mechanisms of locusts’ visual65

systems. Specifically, a group of neurons called lobula giant movement detectors (LGMD, LGMD1 and66

LGMD2) have been identified in locusts’ optic lobe (Simmons and Rind, 1997; Rind, 2002; Gabbiani67

et al., 2002, 2004; Rind and Bramwell, 1996). Such neurons are highly effective at detecting objects that68

move in depth signaling collision danger, and responsible for triggering escape behavior. Despite LGMD169

and LGMD2 are adjacent to each other and sharing close physiological characteristics, these neurons70

exhibit distinct loom-selectivity: the LGMD1 is able to detect both darker and brighter approaching targets71

(OFF and ON contrasts), whereas the LGMD2 specifically responds to darker approaching objects (OFF72

contrast). In recent two decades, by incorporating different modeling theories to shape the loom-selectivity73

of LGMD (Rind and Bramwell, 1996; Yue and Rind, 2006; Keil, 2011; Bermúdez i Badia et al., 2010; Fu74

et al., 2018b; Keil et al., 2004; Salt et al., 2019; Fu et al., 2020a, 2023; Zhao et al., 2024), the LGMD-based75

single-neuron models have been investigated extensively with many successful application in machine76

vision and navigation (Fu et al., 2019, 2018a; Fu, 2023). Compared to fly-inspired optical flow (OF)-based77

approaches, LGMD models exhibit a distinct preference for detecting directly approaching targets, relying78

on global rather than local motion cues. Furthermore, unlike LPLC2-based models, LGMD systems show79

greater flexibility in detecting looming motion initiated from various spatial positions within the visual80

field.81

Although existing neural models have shown robustness and effectively addressed some real-world82
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collision detection problems, achieving consistent loom-selectivity remains a challenge, especially in83

dynamic physical scenes that involve multiple types of movements, such as translation, rotation, and84

recession. This limitation highlights the inherent constraints of single-neuron computations.85

To overcome these deficiencies, researchers have explored the modularization of neural models or86

networks to accomplish complex perceptual tasks (Kelkar and Medaglia, 2021; Amer and Maul, 2019;87

Bertolero et al., 2015; Meunier et al., 2010; Clune et al., 2013; Amer, 2019). Modularity refers to the capac-88

ity of a neural or artificial system to be decomposed into relatively independent, reusable, and combinable89

subsystems (modules). Building upon this principle, Li et al. developed a composite model combining90

LGMD1 (Fu et al., 2018b) and LGMD2 (Fu et al., 2020a) neural network structures. Their proposed91

modular approach, presented in two variations—LGMD1-LGMD2 and LGMD2-LGMD1—significantly92

improved looming selectivity by effectively reducing interference from translating and receding stimuli93

(Li et al., 2023). Specifically, each neural model employs a four-layer structure to emulate the presynaptic94

neuropils of either LGMD1 or LGMD2 neural circuit (see Fig. 1). Each model functions as an independent95

computational unit, or module, which can be combined sequentially, with the output of the preceding96

module serving as the input to the next.97

In our previous work related to this paper (Wang et al., 2024), we optimized both the time and space98

complexity of this composite LGMD model, successfully implementing it within the embedded vision99

modules of ground-based micro-robots characterized by limited computational resources. In robotic100

implementations, the proposed composite model significantly enhances looming selectivity, enabling101

robots to respond exclusively to approaching targets and achieve collision-free navigation within an arena102

(Wang et al., 2024). Specifically, the two neuronal modules mutually reinforce each other, with the103

preliminary looming selectivity generated by the first module refined and strengthened by the second,104

irrespective of their sequence in the model.105

This observation prompts several questions: (1) What core structure within the second module is106

essential for enhancing loom-selectivity? (2) Is it necessary for this second module to retain the entire107

four-layer structure, or could it be simplified without compromising performance?108

To identify the core structural component responsible for enhancing looming selectivity, we initially109

conducted offline redundancy experiments focused on the second module of the composite model. The110

results clearly demonstrated that introducing an additional time-derivative operation is the critical factor111

behind the improved loom-selectivity. Consequently, we developed a more economical neuronal assembly112

model that emphasizes the elevated temporal derivative in the cascaded module. We compared the113

proposed optimized model with state-of-the-art methods and validated its superior performance in loom-114

selectivity across diverse real-world visual scenarios. Additionally, we conducted online comparative115

tests using micro-robots, visualizing internal layer representations of the embedded neuronal model and116

benchmarking its performance against our previously established model (Wang et al., 2024).117

The systematic experimental results yield the following primary findings:118

• The most significant finding is that simply introducing an additional temporal derivative operation119

after the first-stage module—specifically, further processing limited to the retinal layer of the second120

cascade—significantly enhances loom-selectivity. This result confirms that elevating the temporal121

derivative is crucial for strengthening looming-selective responses.122

• We propose a time-derivative-based model that substantially streamlines the neural architecture without123

compromising the loom-selectivity of the original composite model. This creates an efficient visual124

perception module well-suited for mobile robots with limited computational resources.125

• Our research also provides plausible insights into neuroscience, i.e., the efficacy of locust LGMD126

neuronal ensembles, suggesting that these loom-selective neurons might achieve optimal looming127

perception through interconnected neural assemblies rather than operating independently.128

Section 2 details the proposed computational model. Experimental results and analysis are presented129

in Section 3. Section 4 summarizes this paper and points out future work.130

2 FORMULATION OF THE COMPUTATIONAL FRAMEWORK131

In this section, we present the algorithms of the proposed model in detail, which is essentially a derivative132

of the LGMD2-LGMD1 model, as shown schematically in Fig. 2.133
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Figure 2. Schematic diagram of the proposed computational framework with raised temporal derivative

by feeding the output of first neuronal module (light blue box) as input to the second: for simplicity, only

one single neuronal processing pipeline is shown.

2.1 Model Description134

This time derivative model, also called LGMD2-Derivative, consists of two modules: the first module135

includes the retina, lamina and medulla layers in the LGMD2 model, and the second one only consists136

of the retina layer and the final LGMD1 cell for output, rendering the intermediate layer processing137

redundant. Specifically, the first retina layer (P layer) is used to extract changes of light intensities with138

respect to time. The lamina layer comprises ON/OFF-type cells that split visual motion information into139

two parallel processing pathways. Such mechanism is well established at the preliminary stages of visual140

signal processing and has been found in the visual systems of many animal species, such as invertebrates141

like flies (Borst and Euler, 2011) and dragonflies (Geurten et al., 2007), and vertebrates like rabbits (Borst142

and Euler, 2011) and cats (Troyer et al., 1998). The medulla layer, including excitation units (E layer),143

inhibition units (I layer), and summation units (S layer), is a key component for achieving loom-selectivity.144

The second retina layer raises temporal derivative of outputs from the previous LGMD2 module with an145

additional high-pass filter. The LGMD1 neuron integrates information from its retina layer and activates146

membrane potentials. Finally, the temporal potential is transformed to frequency domain using a spiking147

mechanism in order to indicate potential collision threats towards artificial and robotic systems.148

It is worth noting that in our preliminary research (Wang et al., 2024), we observed that the LGMD1-149

LGMD2 model exhibited slightly lower robustness and selectivity compared to the LGMD2-LGMD1150

configuration. Therefore, this paper specifically focuses on the LGMD2-LGMD1 model to clearly identify151

the core structural component responsible for enhancing looming selectivity.152

2.2 Formulation153

Here we present the formulation of proposed simplified LGMD2-Derivative model with emphasis laid154

upon the elevated time derivative. Our original composite model (Wang et al., 2024), named LGMD2-155

Excitation model for comparison, is elucidated in the Appendix.156

2.2.1 LGMD2—Retina layer (The first time derivative)157

The LGMD2’s retina is the first computational layer of the proposed time-derivative model and consists of158

photoreceptors arranged in a matrix. Each receives stimuli that presented in image streams at gray-scale159

luminance from the external environment and further extracts changes between two consecutive frames,160

with respect to time, as the following161

M(x,y, t) = α1 ·
�

L(x,y, t)2L(x,y, t 21)+M(x,y, t 21)
�

, (1)
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where L(x,y, t) * R
3 denotes the pixel values of the input image, (x, y) represents spatial position of each162

receptor and (t) represents temporal position. α1 is a delay coefficient, and is calculated by163

α1 =
τ1

τ1 + τin

, (2)

where τ1 and τin are time delay constant and the time interval between two consecutive frames, respectively.164

Subsequently, a normalized Gaussian kernel of size 3×3 with a standard deviation at 1 is applied to165

M(x,y, t) for blurring to suppress irrelevant noise, defined as follows166

P(x,y, t) =
��

M(u,v, t)Gp(x2u,y2 v)dudv. (3)

Furthermore, when a large number of photoreceptor cells in the visual field are activated, such as in scenes167

of impending collision, or significant changes in the external environment like robot turning, they exerts168

strong, whole-field inhibition directly upon LGMD neurons. To simulate this, an adaptive inhibition169

mechanism (AIM) was introduced to adjust the time-varying biases within ON/OFF pathways (Fu et al.,170

2020a). The mathematical expression is defined as171

PM(t) =
R

∑
x=1

C

∑
y=1

|M(x,y, t)| · (C ·R)21, (4)

among them, R and C refer rows and columns of the matrix, and C ·R simulates the total number of172

receptors in the visual field. Moreover, the AIM mechanism has a slight delay, that is173

ˆPM(t) = (PM(t), ˆPM(t 21), ˆPM(t 22)) ·
2³
θ , (5)

where
2³
θ is the delay coefficient vector (0.6,0.3,0.1)

2
. The time-varying biases are then given by174

ω1(t) = max(ω3,
ˆPM(t)

TPM

), ω2(t) = max(ω4,
ˆPM(t)

TPM

), (6)

ω3 and ω4 denote the different bias baselines in ON and OFF pathways, respectively.175

2.2.2 LGMD2—Lamina layer176

The lamina layer receives signals from the retina layer, in which ON-type neurons respond to dark-to-light177

contrast polarity (ON-contrast), transmitting luminance increases into the ON pathway, and OFF-type178

neurons respond to light-to-dark contrast polarity (OFF-contrast), transmitting luminance decreases into179

the OFF pathway. In summary, the whole process can be achieved by half-wave rectify mechanism as180

Pon(x,y, t) = [P(x,y, t)]++β ·Pon(x,y, t 21), (7)

Po f f (x,y, t) =2[P(x,y, t)]2+β ·Po f f (x,y, t 21), (8)

where [x]+ is max(0,x), and [x]2 is min(x,0). β denotes a delay coefficient that signifies the fraction of181

the previous signal allowed to pass.182

2.2.3 LGMD2—Medulla layer183

After that, the medulla layer continues to handle visual information by incorporating competition between184

excitatory and inhibitory signal flows.185

In the ON channels, convolution operation is conducted on Pon to mimic the spread of local excitation.186

On the other hand, the surrounding delayed excitation Don is obtained using first-order low-pass filtering,187

and then generates the local Inhibition Ion. The whole spatiotemporal computation is given by188

Eon(x,y, t) =
��

Pon(u,v, t)W1(x2u,y2 v)dudv, (9)

Don(x,y, t) = (Eon(x,y, t),Don(x,y, t 21),Don(x,y, t 22)) ·2³αon, (10)

Ion(x,y, t) =
��

Don(u,v, t)WIon(x2u,y2 v)dudv, (11)
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where W1 stands for a convolution kernel in Eq. (12) as189

W1 =
1

8

þ

ø

1 2 1

2 8 2

1 2 1

ù

û , (12)

and
2³
αon is the delay coefficient vector (0.6,0.2,0.2)

2
.190

In the OFF channels, the generation of local excitation (Eo f f ), local inhibition(Io f f ) and surrounding191

delayed excitation (Do f f ) accords well with those in the ON channels, but with different delay coefficient192

vector
22³
αo f f = (0.4,0.3,0.3)

2
. The computation is as the following193

Eo f f (x,y, t) =
��

Po f f (u,v, t)W1(x2u,y2 v)dudv, (13)

Do f f (x,y, t) = (Eo f f (x,y, t),Do f f (x,y, t 21),Do f f (x,y, t 22)) ·22³αo f f , (14)

Io f f (x,y, t) =
��

Do f f (u,v, t)WIo f f
(x2u,y2 v)dudv, (15)

where WIo f f
and WIon are defined as194

WIo f f
=

1

32

þ

ÿ

ÿ

ÿ

ÿ

ø

1 2 4 2 1

2 4 8 4 2

4 8 16 8 4

1 2 4 2 1

2 4 8 4 2

ù

ú

ú

ú

ú

û

, WIon = 27WIo f f
. (16)

Following the above computations, the local summation units in the medulla layer linearly integrate local195

excitation and inhibition in the ON/OFF pathways, respectively, which reflects the critical race between196

excitation and inhibition. The formulas are presented as197

Son(x,y, t) = [Eon(x,y, t)2ω1(t) · Ion(x,y, t)]
+, (17)

So f f (x,y, t) = [Eo f f (x,y, t)2ω2(t) · Io f f (x,y, t)]
+. (18)

Finally, there are linear summation between the ON/OFF channels to form the output feature representation198

of LGMD2 module, that is199

S(x,y, t) = Son(x,y, t)+So f f (x,y, t). (19)

2.2.4 LGMD1—Retina layer (The second time derivative)200

The second LGMD1’s retina layer plays a central role in this computational framework which works as201

the entry of second cascaded module, elevates the time derivative from the feature representation of first202

module. This works essentially as another high-pass filter, mathematically defined as203

T D(x,y, t) = S(x,y, t)2S(x,y, t 21). (20)

Subsequently, the output is rectified to only allow positive signals to pass through,204

φ(x,y, t) = [T D(x,y, t)]++β ·φ(x,y, t 21). (21)

2.2.5 LGMD1—Neuronal integration and activation205

The LGMD1 neuron integrates its retina’s remaining signals to generate membrane potential k(t) which is206

then activated by a sigmoid function, in order to normalize k(t) to gain K(t) within [0.5,1). The whole207

process is mathematically described as208

k(t) =
R

∑
x=1

C

∑
y=1

φ(x,y, t), K(t) =
�

1+ e2k(t)·(C·R·α2)
21
�21

, (22)

the α2 represents a scale factor to avoid saturation of the activation function.209
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In order to suppress the effect of irrelevant motion stimuli such as translating and receding objects210

on the model to further sculpt loom-selectivity, the spike frequency adaptation mechanism (SFA) in a211

previous modeling study (Fu et al., 2018b) is also applied as212

K̂(t) =

�

α3 ·
�

K̂(t 21)+K(t)2K(t 21)
�

, if
�

K(t)2K(t 21)
�

f Ts f a

α3 ·K(t), otherwise
, (23)

where Ts f a is the threshold constant of SFA mechanism, α3 indicates the adaptation rate, calculated by a213

time constant τs as214

α3 =
τs

τs + τin

. (24)

2.2.6 Spiking frequency215

The temporal membrane potential K̂(t) herein is transformed to frequency domain using an exponential216

mapping as217

Spi(t) =
�

e(α4·(K̂(t)2Tsp))
�

, (25)

where Tsp is the predefined spike threshold, α4 is a scale parameter that influences the firing rate. Finally,218

the potential collision threat can be indicated by computing the spike frequency within a specified time219

window. That is220

Col(t) =

ù

ú

û

True, if

�

t

∑
i=t2nt

Spi(i)

�

×1000/(nt · τin)g Tc

False, otherwise

, (26)

where nt denotes the time window to update spike frequency, and Tc is collision warning threshold. This221

is particularly useful for initiating urgent avoidance behaviors in intelligent machines like mobile robots.222

2.3 Model Parameters Setting223

Table 1. Setting parameters

Parameter Description Value

τ1 time delay constant 100(ms)

τin time interval 15 > 50(ms)

{ω3,ω4} local inhibition bias baseline {0.6, 0.3}

TPM AIM threshold 10 > 50

{C,R} columns and rows adaptable

β delay coefficient 0.1

τs time delay constant in SFA 500 > 1000(ms)

α4 scale parameter of firing rate 4

Tsp spiking threshold 0.7

nt time window 10(frames)

Tc collision warning threshold 15 > 20(Hz)

Table 1 summarizes the parameter settings used in the proposed time-derivative model. Certain224

parameters depend directly on the physical characteristics of the input videos: specifically, C and R225

correspond to the width and height of the image streams, respectively, while τin is determined by the226

video frame rate. The remaining parameters were empirically selected based on prior studies (Li et al.,227

2023; Wang et al., 2024), balancing optimal model performance in both computational simulations and228

robotic implementations. Given the limited number of adjustable parameters, explicit learning processes229

were not within the scope of this model-based study but represent a valuable direction for future research.230
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Realistic Visual Challenges

ID Pattern

Colias Sense Unit

 4 cm 

Camera

STM32F427

Colias Base Unit

Top-Down Camera

 140 cm 

Figure 3. Illustration of the experimental arena and the structure of grounded micro-robot Colias. The

surrounding LED walls can display different scenes to challenge visual systems. The top-down camera

was utilized to localize the robots with ID-specific pattern on each top, with respect to time. The proposed

model was used as the only collision sensing modality in arena tests.

3 EXPERIMENTAL VALIDATION231

In this section, we present the experiments, including offline and online tests. For offline experiments, we232

used physical stimuli composed of indoor and outdoor scenes to test and compare the proposed model233

with state of the arts. For online experiments, we integrated the proposed approach into the vision module234

of a ground-based micro-robot Colias (Hu et al., 2018) for arena tests with layer visualization from robotic235

visual processing. We compared the proposed model with related state of the arts: the early LGMD2-236

LGMD1 composite model (Li et al., 2023), the LGMD1 model (Fu et al., 2018b), the LGMD2 model(Fu237

et al., 2020a), the hybrid LGMD model (Fu et al., 2021), and the LGMD2-Excitation model (algorithms238

in the Appendix). These experiments aimed to explore the key component in neuronal assemblies which239

essentially boosts loom-selectivity, and verify its value in robotic real-time implementation.240

3.1 Experimental Setting241

3.1.1 Offline tests setting242

In the offline tests, both the proposed and comparative models were implemented in computational243

simulations, and their results were visualized for analysis. The visual data used in this study were adapted244

from two previous works (Fu et al., 2020b; Qin et al., 2024), and were recorded in real-world indoor and245

outdoor environments. Specifically, the indoor stimuli consisted of a black ball performing approaching,246

receding, and translating movements, captured at sampling rates of 30 fps, 30 fps, and 60 fps, respectively.247

The outdoor stimuli included vehicle collisions and UAV approaching and retreating from an obstacle248

cylinder, recorded at 30 fps, 20 fps, and 60 fps, respectively. To reduce the computational burden and249

unify the input stimuli dimension, we applied bi-linear interpolation to scale the resolution of all visual250

sequences to 100×100.251

3.1.2 Online tests setting252

In the online tests, we implemented the proposed approach as embedded vision module in the ground-253

based micro-robot Colias (Hu et al., 2018). There were two primary reasons for selecting Colias as the test254

platform: (1) it is a lightweight robot, measuring approximately 4 cm in diameter and weighing 50 grams,255
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capable of responding quickly and accurately to motion commands; and (2) it is widely used in swarm256

robotics research (Liu et al., 2021a,b), and is among the smallest and most cost-effective micro-robots in257

the field.258

As illustrated in Fig. 3, the Colias robot comprises two main components: the Base Unit (CBU) and259

the Sensing Unit (CSU). The CBU, a circular platform at the robot’s base, is responsible for motion and260

power management. It is equipped with two micro DC motors and 2.2 cm diameter wheels, enabling a261

maximum speed of 35 cm/s. A 3.7 V, 320 mAh battery supports autonomous operation for up to two262

hours on a full charge. The CSU, mounted on top of the robot, serves as the vision processing module. It263

features an ARM Cortex-M4F microcontroller and a compact OV7670 CMOS image sensor. The camera264

provides a 70-degree field of view, operating at 30 fps with a resolution of 72×99 pixels—balancing265

computational efficiency and visual fidelity.266

As shown in Fig. 3, experiments were conducted in an arena measuring 1.4×0.8 meters, enclosed by267

LED display walls decorated with static or dynamic grating patterns. A top-down camera was installed268

above the arena to record the motion and performance of the Colias robot. Additionally, specific ID269

markers were placed on top of each robot, allowing a localization system (Krajnı́k et al., 2014) to track270

trajectories and calculate the collision avoidance success rate.271

3.2 Metrics272

To evaluate the proposed and comparative methods, we adopted the confusion matrix and F1 score to273

quantify their performance on looming detection. The confusion matrix reflects the prediction results of274

each model with the basic form as275

�

TN FP

FN TP

�

, (27)

among them, TP (true positive) refers to the number of instances in which the model correctly generates276

a collision warning in response to looming stimuli. FP (false positive) denotes the number of instances277

where the model incorrectly triggers a collision warning for non-looming stimuli, such as translating or278

receding motion. TN (true negative) is the number of instances where the model correctly withholds a279

collision warning for non-looming stimuli. FN (false negative) represents the number of instances where280

the model fails to detect and respond to looming stimuli. F1 score is the weighted average of precision281

and recall, which is defined as282

F1 = 2 ·
Precision ·Recall

Precision+Recall
. (28)

In this research, we focused on analyzing F1 score, with which a larger F1 value indicates a better looming283

perception ability of the model. The formulas for precision and recall values are respectively defined as284

Precision =
TP

TP+FP
, (29)

Recall =
TP

TP+FN
. (30)

3.3 Redundancy Experiments285

Firstly, we conducted redundancy experiments to investigate the key mechanism that improves the loom-286

selectivity. We compared the response and selectivity of the proposed LGMD2-Derivative model with the287

LGMD2-Excitation, with inhibition processing ablated from our previous model (Wang et al., 2024), and288

the original composite LGMD2-LGMD1 model (Li et al., 2023). The formulas of the LGMD2-Excitation289

model are given in the Appendix.290

As shown in Fig. 4 and Fig. 5, the proposed model exhibits behavior comparable to the composite291

LGMD2-LGMD1 model in both indoor and outdoor environments, responding exclusively to approaching292

objects while showing no activation in response to translating or receding stimuli. In contrast, the LGMD2-293

Excitation model is highly sensitive to translating motion and vehicle collision stimuli, demonstrating294

significantly weaker looming selectivity than the other two models. To ensure the reliability of our295

findings and mitigate the influence of chance, all three models were evaluated using 104 real-world video296

sequences, 70% of which contained looming stimuli. The statistical outcomes—including confusion297

matrices, precision, recall, and F1 scores—are presented in Fig. 4, Fig. 5, Fig. 6, and Table 2. The results298
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Figure 4. Offline testing results of model selection studies in indoor scenes: LGMD2-Derivative indicates

the proposed model with just raised time derivative. LGMD2-Excitation indicates the composite model

(Wang et al., 2024) with inhibition ablated in the second LGMD1 module. LGMD2-LGMD1 model is the

intact composite model (Wang et al., 2024) from earlier research. Spiking frequency, with respect to time,

is represented for each of the three models, stimulated by the dark ball approaching (a), receding (b) and

translating (c) within the field of view. For each stimulus, the first column is the input image, the second

column is the representation of retina layer in LGMD2 module, the third column is the output layer in

LGMD2, and the fourth column is the retina layer in LGMD1 module. Red dotted line refers to collision

warning threshold at 18 Hz. The proposed simplified model and full composite LGMD2-LGMD1

model respond only to looming motion as the excitation retains after raising the time derivative at

the second module.

Table 2. F1 score (%) of three models to 104 real-world sets in total

Criterion LGMD2-Derivative LGMD2-Excitation LGMD2-LGMD1

Precision 73.77% 27.27% 90.74%

Recall 83.33% 96.00% 76.56%

F1 Score 78.26% 42.47% 83.05%

show that the proposed model’s F1 score is only 4.79% lower than that of LGMD2-LGMD1, suggesting a299

marginal decrease in looming detection performance, though the difference is not statistically significant.300

In contrast, the LGMD2-Excitation model under-performs substantially, with its F1 score 35.79% and301

40.58% lower than those of LGMD2-Derivative and LGMD2-LGMD1, respectively—indicating poor302

looming recognition capability. Moreover, feature visualizations in Fig. 4 and Fig. 5 reveal that as303
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Figure 5. Offline testing results of model selection studies challenged by outdoor recordings from UAV

and car (a) crash, (b) recession, (c) shifting views. The vertical dashed line indicates the moment of

ground-truth crash at frame 172. Other notations conform to Fig. 4. The proposed simplified model and

full composite LGMD2-LGMD1 model work effectively to extract only looming motion in complex

dynamic scenes.

visual signals propagate deeper into the network, only looming-related features remain after applying the304

elevated temporal derivative at the retina layer of the second LGMD1 module.305

In conclusion, the experiments demonstrate that strong loom-selectivity can be achieved after visual306

information passes through only the retina layer of the second module, suggesting that a full four-layer307

structure is redundant. Crucially, the results highlight that elevating the temporal derivative at the output308

of the first neuronal unit is key to improving loom-selectivity. This approach ensures the model selectively309

responds to approaching stimuli while significantly simplifying its structural complexity.310

3.4 Comparative Experiments311

Through the above experiments, we demonstrated that a complete four-layer structure in the cascaded312

neuronal module is redundant; rather, the incorporation of a temporal derivative computation is central to313

enhancing loom-selectivity. To further validate the effectiveness of the proposed time-derivative model314

in looming perception, we conducted comparative tests using real-world physical stimuli. The model’s315

performance was benchmarked against state-of-the-art approaches, including two single-neuron models,316

LGMD1 (Fu et al., 2018b) and LGMD2 (Fu et al., 2020a), and a hybrid LGMDs neural system in which317

LGMD1 and LGMD2 operate in parallel with their spiking frequencies integrated (Fu et al., 2021).318

3.4.1 Indoor structured scenes319

In the first set of comparative experiments, we employed relatively simple indoor stimuli to evaluate320

model performance. Fig. 7 illustrates the spiking frequency outputs of each model across three test321
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Figure 6. Confusion matrices for six comparative models on real physical datasets. Each matrix shows

true positive (TP), false positive (FP), true negative (TN) and false negative (FN). Compared with the

other models, the proposed simplified neuronal assembly model and the full LGMD2-LGMD1

composite model have higher rates of TP and TN challenged by car and UAV scenarios, which

demonstrate enhanced loom-selectivity with raised time derivative.

scenarios. Overall, the results reveal clear differences in activation behavior among the four models. All322

models successfully detect the approaching black ball; however, the three comparative models exhibit323

susceptibility to non-looming stimuli. Specifically, LGMD1 shows transient activation to receding motion324

and strong responses to translation. Although LGMD2 and the hybrid LGMDs do not respond to receding325

stimuli, both exhibit significant activation to translational motion, misclassifying it as potential collision326

risk. In contrast, the proposed model robustly suppresses responses to both receding and translational327

motion, preserving selective activation only for genuine looming stimuli.328

These experimental findings underscore a critical insight: compared to existing models, the proposed329

LGMD2-Derivative model more closely approximates the biological capability of loom-selectivity, thereby330

advancing the development of artificial visual systems for robust looming perception.331

3.4.2 Vehicle and UAV scenes332

In the second set of comparative experiments, we evaluated the proposed model in more complex and333

challenging outdoor scenarios to further assess its robustness and applicability in ground vehicle and334

UAV platforms. Fig. 8 presents the performance of all models in these scenarios. Consistent with the335

findings from the first experimental set, the proposed time-derivative model successfully detects imminent336

collisions while exhibiting no response to non-threatening stimuli, such as a UAV translating laterally or337

moving away from an obstacle (i.e., receding motion).338

In contrast, the comparative models continue to misclassify these irrelevant motions—particularly339

translation and recession—as potential collision threats. Notably, the LGMD2 and the hybrid LGMDs340

system demonstrate accurate responses to actual looming stimuli but still exhibit partial activation under341

non-looming conditions. Additionally, LGMD1 generates a premature response when the approaching342

vehicle is still at a relatively distant position, indicating a lower selectivity threshold.343

These results further confirm that the proposed model maintains strong loom-selectivity and robustness344

even in complex and naturalistic environments. Moreover, the findings highlight the potential of the345

proposed model for deployment in both terrestrial and aerial robotic platforms, where reliable and efficient346

collision perception is crucial under real-world operational constraints.347
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Figure 7. Comparative model responses against indoor visual movements, captured from a fixed camera:

The stimuli on top are represented by intensity change of center line with respect to time. (a) dark ball

(black pixels) approaching over time, (b) dark ball receding, (c) dark ball translating. Horizontal dashed

line denotes threshold for collision warning. The proposed model only responds to looming motion

with enhanced selectivity.

3.4.3 Statistical results348

Finally, Table 3 summarizes the statistical results of precision, recall, and F1 scores for the four evaluated349

models across various real-world scenarios, with corresponding confusion matrices illustrated in Fig. 6.350

Notably, the proposed model achieves the highest F1 score of 78.26%, reflecting an optimal balance351

between precision and recall, and demonstrating a strong capability to accurately detect approaching352

objects. Moreover, the model exhibits both low false positive and false negative rates, indicating a reduced353

likelihood of false alarms and missed detections. In contrast, although LGMD1 achieves the highest recall354

(95.83%), its precision is markedly low (22.33%), suggesting that while the model is highly sensitive to355

looming stimuli, it frequently misclassifies non-looming motions—such as translation or recession—as356

collision threats. This tendency is clearly reflected in its confusion matrix, which reveals a substantial357

number of false positives. In summary, the proposed time-derivative model outperforms the comparative358

LGMD-based models in terms of both selectivity and robustness, offering a more reliable solution for359

looming perception in real-world visual environments.360
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Figure 8. Comparative model responses against complex outdoor visual movements, captured from

recordings by ground vehicle and UAV: The stimuli on top are represented by intensity change of center

line with respect to time. (a) ground vehicle (gray pixels) approaching over time, (b) UAV recession from

a cylindrical obstacle (marked with red-and-white pixels), (c) UAV shifting in front of the cylindrical

obstacle. Horizontal dashed line denotes threshold for collision warning, vertical line indicates ground

truth crash moment. The proposed model only responds to looming motion with enhanced selectivity.

3.5 Embodiment in Micro-Robot Vision361

If the temporal derivative is indeed the core factor enhancing loom-selectivity, a critical question arises:362

does this mechanism retain its efficacy when embodied in a machine vision system? To address this, we363

implemented the proposed LGMD2-Derivative model on the Colias robot and conducted comparative364

experiments against the previously developed hybrid LGMDs model (Fu et al., 2021), which adopts a365

different strategy by integrating multiple neuron models in parallel. Specifically, the hybrid model fuses366

the outputs of LGMD2 and LGMD1 neurons through a parallel architecture, providing a representative367

benchmark for evaluating alternative combination strategies. This comparison enabled us to rigorously368

assess whether raising the temporal derivative, as proposed in our model, offers superior performance in369

robotic looming perception under real-world conditions. The robot and arena configuration are illustrated370

in Fig. 3.371
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Table 3. F1 score (%) of four models to 104 real-world sets in total

Criterion LGMD2-Derivative Hybrid LGMDs LGMD1 LGMD2

Precision 73.77% 50.94% 22.33% 63.04%

Recall 83.33% 48.21% 95.83% 47.54%

F1 Score 78.26% 49.54% 36.22% 54.20%

Scene 1: Guangzhou Skyline

Scene 2: Grass Field

Scene 3: Forest and Shrubbery

Scene 4: Outdoor Buildings

Figure 9. Four experimental scenarios (left column) in the arena setting, and the corresponding layer-

wise visualizations of the proposed time-derivative model are shown. Scenes 1>4 correspond to rows

1>4, featuring a Guangzhou city skyline and three complex natural environments, respectively.

3.5.1 Robot visualization372

What does the elevation of temporal derivative contribute to machine vision? To investigate the role373

of higher-order temporal derivatives in visual processing, we visualized the robot’s perspective during374

forward motion toward the LED wall as exemplified in Fig. 3. The layer-wise neural responses of the375

proposed model across Scenes 1 > 4 are presented in Fig. 9.376

The visualizations reveal that the application of a second-order temporal derivative at the retina (P)377

layer significantly enhances the model’s capacity to extract behaviorally relevant features. Specifically,378

only the most salient motion contours—corresponding to looming trajectories—remain after the derivative379

calculation. These contours are spatially aligned with actual approaching objects, highlighting the model’s380

ability to isolate critical collision-related cues. In Scenes 1 > 2, the final-layer responses clearly delineate381

the silhouettes of approaching objects, preserving only prominent expanding edges such as the top382

boundaries of buildings and distant tree lines. Conversely, in Scenes 3 > 4—characterized by low-contrast383

boundaries and complex, noisy backgrounds—no obvious expansion features persist. However, faint384

motion traces remain sufficient to elicit a neural response, indicating that the model retains functional385

sensitivity to subtle dynamic changes.386

To sum up, the elevation of temporal derivative thus acts as a selective amplifier for rapid, transient387

motion cues while suppressing static or slowly varying background features. This mechanism signif-388
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Figure 10. Robot arena tests results: overtime trajectories of two robots are illustrated where green one

indicates the proposed LGMD2-Derivative model and red one denotes the comparative hybrid LGMD

model. According to Fig. 9, four visual scenes as LED background were tested. Upper-left: Scene-1,

Guangzhou skyline; Upper-right: Scene-2, Grass field; Bottom-left: Scene-3, Forest and shrubbery;

Bottom-right: Scene-4, Outdoor buildings. For clarity, performance of 5-minute time window is shown

for each scene. The linear velocity of each robot was configured constantly j 9.75cm/s, and the turning

angular speed was set at 150ç±30ç. Generally, both model systems work effectively and robustly to

guide micro-robot looming perception and collision avoidance in all tested scenes. The proposed

model performs slightly better regarding success rate in all tested scenes as demonstrated in Table 4.

Table 4. Success rate of collision avoidance demonstrated by two models in robot arena tests

Robot embodiment Guangzhou Skyline Grass Field Forest/Shrubbery Outdoor Buildings

Hybrid LGMD model 95.88% 83.21% 88.93% 92.09%

LGMD2-Derivative model 96.25% 90.55% 91.48% 93.16%

icantly enhances the model’s robustness and loom-selectivity, reinforcing the quantitative advantages389

demonstrated in the preceding experimental sections.390

3.5.2 Closed-loop arena tests391

In the final type of robotic arena experiments, we conducted four sets of comparative online trials. The392

experimental setup followed the configuration described in Section 3.1.2, as illustrated in Fig. 3, Fig. 9,393

and Fig. 10. It is important to emphasize three key points: (1) the visual models under evaluation served394

as the sole collision detection mechanisms for guiding autonomous navigation, (2) no human intervention395

was involved during the trials, except in cases where the robot became immobilized against the arena396

boundaries, (3) each visual scene was tested under a 15-minute duration.397

The results of the online robotic tests are summarized in Fig. 10, with the corresponding success rates398

for each of the four visual environments listed in Table 4. Overall, both the proposed LGMD2-Derivative399

model and the comparative hybrid LGMD model demonstrated effective and robust looming detection400

and collision avoidance capabilities across all tested scenes. As embodied in micro-robot vision, the401

LGMD2-Derivative model achieved slightly higher success rates than the hybrid LGMD model. Notably,402

both models performed best in scenarios featuring the Guangzhou skyline and outdoor buildings, where403

distinct object edges are more prominent. In contrast, their performance declined in the grass field404
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scenario, which presented naturally blurred textures and low-contrast boundaries.405

To sum up, the most salient distinction between the two compound models lies in the order of the406

temporal derivative employed in visual information processing. Experimental results strongly suggest that407

elevating the order of temporal derivative is pivotal for enhancing model robustness, particularly when408

confronted with complex and dynamic real-world visual scenarios.409

4 CONCLUSION410

In this paper, we extended our preliminary investigation into LGMD neuronal assembly models to411

identify the core mechanism responsible for enhancing loom-selectivity in both computational simulations412

and robotic implementations. Our modeling study revealed that increasing the temporal derivative in413

continuous visual streams significantly improves the discrimination of looming stimuli against various414

other types of visual motion. Building upon this insight, we proposed a simplified, time-derivative-based415

neuronal model. Comparative evaluations demonstrated that this new model performs on par with the416

previously developed composite model (Wang et al., 2024) and outperforms state-of-the-art methods.417

When implemented in robotic platforms, the proposed model exhibited reduced computational complexity,418

enabling real-time processing. This efficiency makes it extremely advantageous for deployment in419

micro-mobile robots that have constrained computational resources.420

Our future work will primarily, though not exclusively, address the following directions. First, as421

the current study focuses mainly on second-order temporal derivatives, we intend to further explore422

higher-order derivatives—especially at the retinal processing stage. We aim to determine whether looming423

detection performance continues to improve with increasing derivative order and identify an optimal424

derivative level for robust looming detection.425

Second, directional selectivity mechanisms, such as elementary motion detectors (EMD), will be426

incorporated into the proposed LGMD2-Derivative model. The integration of EMD aims to simulate427

biologically inspired attention mechanisms more effectively. While our current model emphasizes overt428

attention by detecting centrally approaching objects, incorporating EMD-based modules would enable429

covert attention capabilities, allowing the detection of dynamic changes in the peripheral visual field.430

Lastly, we plan to investigate the use of event-driven sensors as input streams for the proposed approach.431

Event-driven sensors are well-suited for real-time motion detection tasks due to their advantages in low432

latency, high dynamic range, low power consumption, and asynchronous signal processing.433
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APPENDIX437

This appendix supplements the paper by elaborating on the algorithms of LGMD2-Excitation model with438

inhibition ablated from our previous framework (Wang et al., 2024). The key difference is laid upon the439

neural processing of the second LGMD1 module.440

LGMD2—Retina layer441

M(x,y, t) = α1 ·
�

L(x,y, t)2L(x,y, t 21)+M(x,y, t 21)
�

(a.1)

442

α1 =
τ1

τ1 + τin

(a.2)

443

P(x,y, t) =
��

M(u,v, t)Gp(x2u,y2 v)dudv (a.3)

444

PM(t) =
R

∑
x=1

C

∑
y=1

|M(x,y, t)| · (C ·R)21 (a.4)
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445

ˆPM(t) = (PM(t), ˆPM(t 21), ˆPM(t 22)) ·
2³
θ (a.5)

446

ω1(t) = max(ω3,
ˆPM(t)

TPM

), ω2(t) = max(ω4,
ˆPM(t)

TPM

) (a.6)

LGMD2—Lamina layer447

Pon(x,y, t) = [P(x,y, t)]++β ·Pon(x,y, t 21) (a.7)

Po f f (x,y, t) =2[P(x,y, t)]2+β ·Po f f (x,y, t 21) (a.8)

LGMD2—Medulla layer448

Eon(x,y, t) =
��

Pon(u,v, t)W1(x2u,y2 v)dudv (a.9)

Don(x,y, t) = (Eon(x,y, t),Don(x,y, t 21),Don(x,y, t 22)) ·2³αon (a.10)

Ion(x,y, t) =
��

Don(u,v, t)WIon(x2u,y2 v)dudv (a.11)

449

W1 =
1

8

þ

ø

1 2 1

2 8 2

1 2 1

ù

û (a.12)

450

Eo f f (x,y, t) =
��

Po f f (u,v, t)W1(x2u,y2 v)dudv (a.13)

Do f f (x,y, t) = (Eo f f (x,y, t),Do f f (x,y, t 21),Do f f (x,y, t 22)) ·22³αo f f (a.14)

Io f f (x,y, t) =
��

Do f f (u,v, t)WIo f f
(x2u,y2 v)dudv (a.15)

451

WIo f f
=

1

32

þ

ÿ

ÿ

ÿ

ÿ

ø

1 2 4 2 1

2 4 8 4 2

4 8 16 8 4

1 2 4 2 1

2 4 8 4 2

ù

ú

ú

ú

ú

û

, WIon = 27WIo f f
(a.16)

452

Son(x,y, t) = [Eon(x,y, t)2ωon(t) · Ion(x,y, t)]
+ (a.17)

So f f (x,y, t) = [Eo f f (x,y, t)2ωo f f (t) · Io f f (x,y, t)]
+ (a.18)

453

ωon(t) = ω1(t), ωo f f (t) = ω2(t) (a.19)

454

S(x,y, t) = Son(x,y, t)+So f f (x,y, t) (a.20)

LGMD1—Retina layer455

T D(x,y, t) = S(x,y, t)2S(x,y, t 21) (a.21)
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LGMD1—Excitation Layer456

P̂on(x,y, t) = [T D(x,y, t)]++β · P̂on(x,y, t 21) (a.22)

ˆPo f f (x,y, t) =2[T D(x,y, t)]2+β · ˆPo f f (x,y, t 21) (a.23)

ˆEon(x,y, t) =
��

T D(u,v, t)W1(x2u,y2 v)dudv (a.24)

ˆEo f f (x,y, t) =
��

T D(u,v, t)W1(x2u,y2 v)dudv (a.25)

457

φ̂(x,y, t) = ˆEon(x,y, t)+ ˆEo f f (x,y, t) (a.26)

LGMD1—Neuronal integration and activation458

k(t) =
R

∑
x=1

C

∑
y=1

φ̂(x,y, t), K(t) =
�

1+ e2k(t)·(C·R·α2)
21
�21

(a.27)

459

K̂(t) =

�

α3

�

K̂(t 21)+K(t)2K(t 21)
�

, if (K(t)2K(t 21))f Ts f a

α3K(t), otherwise
(a.28)

460

α3 =
τs

τs + τin

(a.29)

Spiking frequency461

Spi(t) =
�

e(α4·(K̂(t)2Tsp))
�

(a.30)

462

Col(t) =

ù

ú

û

True, if

�

t

∑
i=t2nt

Spi(i)

�

×1000/(nt · τin)g Tc

False, otherwise

(a.31)
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Bermúdez i Badia, S., Bernardet, U., and Verschure, P. F. (2010). Non-linear neuronal responses as an467

emergent property of afferent networks: a case study of the locust lobula giant movement detector.468

PLoS Computational Biology, 6(3):e1000701.469

Bertolero, M. A., Yeo, B. T., and D’Esposito, M. (2015). The modular and integrative functional470

architecture of the human brain. Proceedings of the National Academy of Sciences, 112(49):E6798–471

E6807.472

Bertrand, O. J., Lindemann, J. P., and Egelhaaf, M. (2015). A bio-inspired collision avoidance model based473

on spatial information derived from motion detectors leads to common routes. PLoS Computational474

Biology, 11(11):e1004339.475

Borst, A. and Euler, T. (2011). Seeing things in motion: models, circuits, and mechanisms. Neuron,476

71(6):974–994.477

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of478

the Royal Society b: Biological sciences, 280(1755):20122863.479

Franceschini, N. (2014). Small brains, smart machines: from fly vision to robot vision and back again.480

Proceedings of the IEEE, 102(5):751–781.481

Fu, Q. (2023). Motion perception based on on/off channels: A survey. Neural Networks, 165:1–18.482

19/21PeerJ Comput. Sci. reviewing PDF | (CS-2025:06:120521:0:0:NEW 9 Jun 2025)

Manuscript to be reviewedComputer Science



Fu, Q., Hu, C., Liu, P., and Yue, S. (2018a). Towards computational models of insect motion detectors for483

robot vision. In Annual Conference Towards Autonomous Robotic Systems, pages 465–467. Springer.484

Fu, Q., Hu, C., Peng, J., Rind, F. C., and Yue, S. (2020a). A robust collision perception visual neural485

network with specific selectivity to darker objects. IEEE Transactions on Cybernetics, 50(12):5074–486

5088.487

Fu, Q., Hu, C., Peng, J., and Yue, S. (2018b). Shaping the collision selectivity in a looming sensitive488

neuron model with parallel on and off pathways and spike frequency adaptation. Neural Networks,489

106:127–143.490

Fu, Q., Li, Z., and Peng, J. (2023). Harmonizing motion and contrast vision for robust looming detection.491

Array, 17:100272.492

Fu, Q., Sun, X., Liu, T., Hu, C., and Yue, S. (2021). Robustness of bio-inspired visual systems for collision493

prediction in critical robot traffic. Frontiers in Robotics and AI, 8:529872.494

Fu, Q., Wang, H., Hu, C., and Yue, S. (2019). Towards computational models and applications of insect495

visual systems for motion perception: A review. Artificial Life, 25(3):263–311.496

Fu, Q., Wang, H., Peng, J., and Yue, S. (2020b). Improved collision perception neuronal system model497

with adaptive inhibition mechanism and evolutionary learning. IEEE Access, 8:108896–108912.498

Gabbiani, F., Krapp, H., Koch, C., and Laurent, G. (2002). Multiplicative computation by a looming-499

sensitive neuron. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall500

Meeting of the Biomedical Engineering Society][Engineering in Medicine and Biology, volume 3,501

pages 1968–1969. IEEE.502

Gabbiani, F., Krapp, H. G., Hatsopoulos, N., Mo, C.-H., Koch, C., and Laurent, G. (2004). Multiplication503

and stimulus invariance in a looming-sensitive neuron. Journal of Physiology-Paris, 98(1-3):19–34.504

Geurten, B. R., Nordstrom, K., Sprayberry, J. D., Bolzon, D. M., and O’Carroll, D. C. (2007). Neural505

mechanisms underlying target detection in a dragonfly centrifugal neuron. Journal of Experimental506

Biology, 210(18):3277–3284.507

Green, W. E. and Oh, P. Y. (2008). Optic-flow-based collision avoidance. IEEE Robotics & Automation508

Magazine, 15(1):96–103.509

Green, W. E., Oh, P. Y., and Barrows, G. (2004). Flying insect inspired vision for autonomous aerial robot510

maneuvers in near-earth environments. In IEEE International Conference on Robotics and Automation,511

2004. Proceedings. ICRA’04. 2004, volume 3, pages 2347–2352. IEEE.512

Hu, C., Fu, Q., and Yue, S. (2018). Colias iv: The affordable micro robot platform with bio-inspired513

vision. In Annual Conference Towards Autonomous Robotic Systems, pages 197–208. Springer.514

Hua, M., Fu, Q., Peng, J., Yue, S., and Luan, H. (2022). Shaping the ultra-selectivity of a looming515

detection neural network from non-linear correlation of radial motion. In IEEE The International Joint516

Conference on Neural Networks.517

Keil, M. (2011). Emergence of multiplication in a biophysical model of a wide-field visual neuron for518

computing object approaches: Dynamics, peaks, & fits. Advances in Neural Information Processing519

Systems, 24.520

Keil, M. S., Roca-Moreno, E., and Rodriguez-Vazquez, A. (2004). A neural model of the locust visual521

system for detection of object approaches with real-world scenes. In Proceedings of the fourth IASTED522

international conference on visualization, imaging, and image processing, pages 340–345. IASTED.523

Kelkar, A. and Medaglia, J. D. (2021). Evidence of brain modularity. In Encyclopedia of evolutionary524

psychological science, pages 2432–2441. Springer.525

Klapoetke, N. C., Nern, A., Peek, M. Y., Rogers, E. M., Breads, P., Rubin, G. M., Reiser, M. B., and526

Card, G. M. (2017a). Ultra-selective looming detection from radial motion opponency. Nature,527

551(7679):237–241.528

Klapoetke, N. C., Nern, A., Peek, M. Y., Rogers, E. M., Breads, P., Rubin, G. M., Reiser, M. B., and Card,529

G. M. (2017b). Ultra-selective looming detection from radial motion opponency. Nature, 551:237–241.530
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Rind, F. C., Wernitznig, S., Pölt, P., Zankel, A., Gütl, D., Sztarker, J., and Leitinger, G. (2016). Two557

identified looming detectors in the locust: ubiquitous lateral connections among their inputs contribute558

to selective responses to looming objects. Scientific Reports, 6(1):35525.559

Salt, L., Howard, D., Indiveri, G., and Sandamirskaya, Y. (2019). Parameter optimization and learning560

in a spiking neural network for uav obstacle avoidance targeting neuromorphic processors. IEEE561

Transactions on Neural Networks and Learning Systems, 31(9):3305–3318.562

Serres, J. R. and Ruffier, F. (2017). Optic flow-based collision-free strategies: From insects to robots.563

Arthropod Structure & Development, 46(5):703–717.564

Simmons, P. J. and Rind, F. C. (1997). Responses to object approach by a wide field visual neurone,565

the LGMD2 of the locust: characterization and image cues. Journal of Comparative Physiology A,566

180:203–214.567

Troyer, T. W., Krukowski, A. E., Priebe, N. J., and Miller, K. D. (1998). Contrast-invariant orientation568

tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.569

Journal of Neuroscience, 18(15):5908–5927.570

Wang, H., Fu, Q., Wang, H., Baxter, P., Peng, J., and Yue, S. (2021). A bioinspired angular velocity571

decoding neural network model for visually guided flights. Neural Networks, 136:180–193.572

Wang, H., Fu, Q., Wang, H., Peng, J., and Yue, S. (2019). Constant angular velocity regulation for visually573

guided terrain following. In Artificial Intelligence Applications and Innovations, pages 597–608.574

Springer International Publishing.575

Wang, M., Huang, J., Sun, X., Hu, C., Peng, J., and Fu, Q. (2024). A composite neuronal model as576

miniaturized visual modality for collision perception. In International Conference on Robot Intelligence577

Technology and Applications. Springer.578

Yue, S. and Rind, F. C. (2006). Collision detection in complex dynamic scenes using an LGMD-based579

visual neural network with feature enhancement. IEEE Transactions on Neural Networks, 17(3):705–580

716.581

Zhao, J., Xi, S., Li, Y., Guo, A., and Wu, Z. (2023). A fly inspired solution to looming detection for582

collision avoidance. iScience, 26:106337.583

Zhao, J., Xie, Q., Shuang, F., and Yue, S. (2024). An angular acceleration based looming detector for584

moving uavs. Biomimetics, 9(1):22.585

Zhou, B., Li, Z., Kim, S., Lafferty, J., and Clark, D. A. (2022). Shallow neural networks trained to detect586

collisions recover features of visual loom-selective neurons. eLife, 11:e72067.587

21/21PeerJ Comput. Sci. reviewing PDF | (CS-2025:06:120521:0:0:NEW 9 Jun 2025)

Manuscript to be reviewedComputer Science


