Fly-Inspired Ultra-selective Looming Perception and Avoidance on Resource-Constrained Micro-Robots

Renyuan Liu, Qinbing Fu

Abstract

- Flying insects such as Drosophila can swiftly transform sensory cues into evasive actions to avoid predators.
- Among their visuomotor pathways, the LPLC2 visual projection neurons are ultra-selective to looming stimuli; their population densely tiles the entire visual field and activates premotor circuits to trigger escape takeoff.
- Inspired by this, we designed a concise closed-loop visual-perception and motion-control system for the Colias micro-robot, mimicking the fly's looming-sensitive circuit for real-time threat evasion.
- To our knowledge, this is the first real-world implementation of a fly-inspired collision perception system on a vision-based micro-robot.

Evasive Intelligence in *Drosophila*

• In flies, looming-related visual features are linearly integrated by the escape circuit, with downstream giant fiber neurons modulating the selection between long and short takeoff evasive responses.

Biomimetic Micro-Robotics

• Inspired by insect vision, our goal is to enable vision-based micro-robots to detect and evade approaching threats by mimicking the ultra-selective response of the LPLC2 neural ensemble.

Contact

- Email:
 rliu@e.gzhu.edu.cn
 (Institutional),
 renyvannnn@gmail
 .com (Personal)
- Mobile/WeChat:+86 14784206312

Future Work

- Currently, we have developed a closed-loop control system for *Colias* inspired by the fruit fly visual system.
- In the next stage, we plan to conduct **more comprehensive experiments**, including comparative studies with existing bio-inspired models such as the locust-inspired LGMD collision detection system
- These experiments will be performed on micro-robots in realworld physical environments, which are significantly more challenging and interesting than computer simulations.
- Our goal is to enable Colias to agilely dodge approaching threats from its entire visual field.

Reference

1. Von Reyn, C. R., Breads, P., Peek, M. Y., Zheng, G. Z., Williamson, W. R., Yee, A. L., ... & Card, G. M. (2014). A spike-timing mechanism for action selection. Nature neuroscience, 17(7), 962-970.

2. Liu, R., & Fu, Q. (2025). Attention-Driven LPLC2 Neural Ensemble Model for Multi-Target Looming Detection and Localization. arXiv preprint arXiv:2504.04477.

3. Hu, C., Fu, Q., & Yue, S. (2018, July). Colias IV: The affordable micro robot platform with bio-inspired vision. In Annual Conference Towards Autonomous Robotic Systems (pp. 197-208). Cham: Springer International Publishing.